SUMMABILITY AND THE CLOSED GRAPH THEOREM

STEVE FAN

Abstract

This note provides a short illustration of the Silverman-Toeplitz theorem from the functional analysis point of view.

1. Introduction

According to [2, p. 148], an infinite-dimensional complex matrix $T=\left(t_{m n}\right)_{m, n=1}^{\infty}$ is said to be regular if it satisfies the following conditions:
(i) There exists a constant $C=C(T)>0$ such that $\sum_{n=1}^{\infty}\left|t_{m n}\right| \leq C$ for all $m \geq 1$;
(ii) For every $n \geq 1$, we have $\lim _{m \rightarrow \infty} t_{m n}=0$;
(iii) For every $n \geq 1$, we have $\lim _{m \rightarrow \infty} \sum_{n=1}^{\infty} t_{m n}=1$.

It is shown [2, Theorem 5.5] that regular matrices preserve limits. More precisely, if $T=\left(t_{m n}\right)$ is regular and $a_{n} \rightarrow a \in \mathbb{C}$ as $n \rightarrow \infty$, then

$$
\begin{equation*}
b_{m}=\sum_{n=1}^{\infty} t_{m n} a_{n} \tag{1.1}
\end{equation*}
$$

is well-defined for each $m \geq 1$ and $b_{m} \rightarrow a$ as $m \rightarrow \infty$. The converse is also true [2, Exercise 5.2.1.3, p. 157]; that is, if T preserves limits in the sense that given any sequence $\left\{a_{n}\right\}_{n=1}^{\infty} \subseteq \mathbb{C}$ converging to $a \in \mathbb{C}$, the sequence $\left\{b_{m}\right\}_{m=1}^{\infty}$ given by (1.1) is well-defined for each $m \geq 1$ and $b_{m} \rightarrow a$ as $m \rightarrow \infty$, then T must be regular. This result together with [2, Theorem 5.5] is now known as the Silverman-Toeplitz theorem. It is clear that if T preserves limits, then it satisfies the conditions (ii) and (iii). Now we show, using tools from functional analysis, that if T preserves limits, then it also satisfies (i).

2. Normed Vector Spaces and Linear Operators

Let $\mathbb{F}=\mathbb{R}$ or \mathbb{C}. Let X be an \mathbb{F}-vector space. A norm on X is a function $\|\cdot\|: X \rightarrow \mathbb{R}_{\geq 0}$ satisfying the following properties:
(a) Positive-definiteness: for any $x \in X,\|x\| \geq 0$ with equality if and only if $x=0$;
(b) Absolute homogeneity: for any $x \in X$ and $c \in \mathbb{F}$, we have $\|c x\|=|c|\|x\|$;
(c) Triangle inequality: for any $x, y \in X$, we have $\|x+y\| \leq\|x\|+\|y\|$.

A normed vector space $(X,\|\cdot\|)$ is simply a vector space X equipped with a norm $\|\cdot\|$. The norm $\|\cdot\|$ induces a topology \mathcal{T} on X. We say that $(X,\|\cdot\|)$ is a Banach space if X is
complete with respect to \mathcal{T}. The finite-dimensional complex vector space $\left(\mathbb{C}^{n},\|\cdot\|_{2}\right)$ provides the simplest example of a complex Banach space, where

$$
\|x\|_{2}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2}
$$

for all $x \in \mathbb{C}^{n}$.
Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed vector spaces with induced topology \mathcal{T}_{X} and \mathcal{T}_{Y}, respectively. A linear operator $T: X \rightarrow Y$ is an \mathbb{F}-linear map from X to Y. The set of all linear operators from X to Y is denoted by $\mathcal{L}(X, Y)$, and we shall write $\mathcal{L}(X):=\mathcal{L}(X, X)$ for simplicity. We say that T is continuous if $T:\left(X, \mathcal{T}_{X}\right) \rightarrow\left(Y, \mathcal{T}_{Y}\right)$ is a continuous function. For a given linear operator $T: X \rightarrow Y$, we define the norm of T by

$$
\|T\|:=\sup _{x \in X \backslash\{0\}} \frac{\|T(x)\|_{Y}}{\|x\|_{X}} .
$$

It is clear that

$$
\|T\|=\sup _{\substack{x \in X \\\|x\|_{X} \leq 1}}\|T(x)\|_{Y}=\sup _{\substack{x \in X \\\|x\|_{X}=1}}\|T(x)\|_{Y}
$$

We say that T is bounded if $\|T\|<\infty$. The set of all bounded linear operators from X to Y is denoted by $\mathcal{B}(X, Y)$, and similarly we shall write $\mathcal{B}(X):=\mathcal{B}(X, X)$. It can be shown $[1$, Proposition 2.1, Chapter III] that T is bounded if and only if T is continuous. One of the most important results concerning bounded linear operators is the following known as the closed graph theorem [1, Theorem 12.6, Chapter III].

Theorem 2.1 (Closed Graph Theorem). Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be Banach spaces. A linear operator $T: X \rightarrow Y$ is bounded if and only if the graph of T,

$$
\operatorname{Gr}(T):=\{(x, T(x)) \in X \times Y: x \in X\},
$$

is closed in $X \times Y$.
Equivalently, a linear operator $T: X \rightarrow Y$ between Banach spaces X and Y is bounded if and only if for any sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq X$ such that $x_{n} \rightarrow x \in X$ and $T\left(x_{n}\right) \rightarrow y \in Y$ as $n \rightarrow \infty$, one has $y=T(x)$. We shall use this equivalent formulation of Theorem 2.1 to show that a matrix that preserves limits must satisfy (i).

3. ℓ^{∞} and Its Subspaces

It is well known that the space $\left(\ell^{\infty},\|\cdot\|_{\infty}\right)$ is a Banach space, where

$$
\|x\|_{\infty}:=\sup _{n \geq 1}\left|x_{n}\right|
$$

for any infinite sequence $x=\left(x_{n}\right)_{n=1}^{\infty} \subseteq \mathbb{C}$ and

$$
\ell^{\infty}:=\left\{\left(x_{n}\right)_{n=1}^{\infty} \subseteq \mathbb{C}:\|x\|_{\infty}<\infty\right\}
$$

Consider the subspace $\left(\ell_{c}^{\infty},\|\cdot\|_{\infty}\right)$, where ℓ_{c}^{∞} consists of all the convergent sequences in ℓ^{∞}. It is not hard to see that ℓ_{c}^{∞} is closed in ℓ^{∞} and hence a Banach space. Indeed, suppose that $\left\{x^{k}\right\}_{k=1}^{\infty} \subseteq \ell_{c}^{\infty}$ converges to $x \in \ell^{\infty}$. Let $\epsilon>0$ be arbitrary. Then there exists $K \geq 1$
such that $\left|x_{n}^{K}-x_{n}\right|<\epsilon / 3$ for all $n \geq 1$. Since $x^{K} \in \ell_{c}^{\infty}$, there exists $N \geq 1$ such that $\left|x_{m}^{K}-x_{n}^{K}\right|<\epsilon / 3$ for all $m, n \geq N$. It follows that

$$
\left|x_{m}-x_{n}\right| \leq\left|x_{m}-x_{m}^{K}\right|+\left|x_{m}^{K}-x_{n}^{K}\right|+\left|x_{n}^{K}-x_{n}\right|<\epsilon
$$

for all $m, n \geq N$. Thus $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent, which implies that $x \in \ell_{c}^{\infty}$. This proves that ℓ_{c}^{∞} is closed in ℓ^{∞}. In fact, if $x_{n}^{k} \rightarrow a_{k}$ and $x_{n} \rightarrow a$ as $n \rightarrow \infty$, then we see that $a_{k} \rightarrow a$ as $k \rightarrow \infty$ by considering the inequality

$$
\left|a_{k}-a\right| \leq\left|a_{k}-x_{n}^{k}\right|+\left|x_{n}^{k}-x_{n}\right|+\left|x_{n}-a\right| .
$$

Consider an arbitrary linear operator $T: \ell_{c}^{\infty} \rightarrow \ell_{c}^{\infty}$ on $\left(\ell_{c}^{\infty},\|\cdot\|_{\infty}\right)$ with matrix representation $T=\left(t_{m n}\right) .{ }^{1}$ Note that

$$
\|T\|=\sup _{\substack{x \in \ell^{\infty} \\\|x\|_{\infty} \leq 1}}\|T x\|_{\infty}=\sup _{\substack{x \in \ell^{\infty} \\\|x\|_{\infty} \leq 1}}\left\|\left(b_{m}(x)\right)_{m=1}^{\infty}\right\|_{\infty}=\sup _{\substack{x \in \ell^{\infty} \\\|x\|_{\infty} \leq 1}} \sup _{m \geq 1}\left|b_{m}(x)\right|,
$$

where

$$
b_{m}(x):=\sum_{n=1}^{\infty} t_{m n} x_{n}
$$

Clearly, we have $\|T\| \leq C(T)$, where

$$
C(T):=\sup _{m \geq 1} \sum_{n=1}^{\infty}\left|t_{m n}\right| \in[0,+\infty] .
$$

On the other hand, suppose that $m \geq 1$ and $N \geq 1$ are positive integers. Define $\left(x_{n}\right)_{n=1}^{\infty}$ by $x_{n}=\operatorname{sgn}\left(t_{m n}\right)$ if $n \leq N$ and $x_{n}=0$ otherwise, where $\operatorname{sgn}(z)=0$ if $z=0$ and $\operatorname{sgn}(z)=|z| / z$ if $z \neq 0$. Then $x_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\left\|\left(x_{n}\right)_{n=1}^{\infty}\right\|_{\infty} \leq 1$. It follows that

$$
\|T\| \geq\left|b_{m}(x)\right|=\sum_{n=1}^{N}\left|t_{m n}\right|
$$

Since $N \geq 1$ and $m \geq 1$ are arbitrary, we conclude that $\|T\| \geq C(T)$. Hence $\|T\|=C(T)$.
Let $T=\left(t_{m n}\right)$ be a matrix that preserves limits. Then $T: \ell_{c}^{\infty} \rightarrow \ell_{c}^{\infty}$ is a linear operator on $\left(\ell_{c}^{\infty},\|\cdot\|_{\infty}\right)$. We show that

$$
\sum_{n=1}^{\infty}\left|t_{m n}\right|<\infty
$$

for every $m \geq 1$. Suppose that this is false for some $m \geq 1$. Then there exists a strictly increasing sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ of positive integers such that $n_{1}=1$ and

$$
\begin{equation*}
\sum_{n=n_{k}}^{n_{k+1}-1}\left|t_{m n}\right| \geq k \tag{3.1}
\end{equation*}
$$

[^0]for all $k \geq 1$. Taking $\left(x_{n}\right)_{n=1}^{\infty}$ with $x_{n}=\operatorname{sgn}\left(t_{m n}\right) / k$ for all $n \in\left[n_{k}, n_{k+1}\right)$ and observing that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$, we have
$$
b_{m}(x)=\sum_{k=1}^{\infty} \sum_{n=n_{k}}^{n_{k+1}-1} \frac{\left|t_{m n}\right|}{k}<\infty
$$

But (3.1) implies that $b_{m}(x)=\infty$, a contradiction.
Now we show that $T \in \mathcal{B}\left(\ell_{c}^{\infty}\right)$. In view of Theorem 2.1, we need only to prove that for any $\left\{x^{k}\right\}_{k=1}^{\infty} \subseteq \ell_{c}^{\infty}$ such that $x^{k} \rightarrow x \in \ell_{c}^{\infty}$ and $T x^{k} \rightarrow y \in \ell_{c}^{\infty}$ as $k \rightarrow \infty$, we have $y=T x$. Suppose that $x_{n}^{k} \rightarrow a_{k}, x_{n} \rightarrow a$ and $y_{n} \rightarrow b$ as $n \rightarrow \infty$. Then $a_{k} \rightarrow a$ as $k \rightarrow \infty$ and $(T x)_{m} \rightarrow a$ as $m \rightarrow \infty$. Let $\epsilon>0$. Since $T x^{k} \rightarrow y$ as $k \rightarrow \infty$, there exists $K \geq 1$ such that

$$
\left|\sum_{n=1}^{\infty} t_{m n} x_{n}^{k}-y_{m}\right|<\epsilon
$$

for all $k \geq K$ and all $m \geq 1$. Letting $m \rightarrow \infty$ we obtain $\left|a_{k}-b\right| \leq \epsilon$ for all $k \geq K$. Since $\epsilon>0$ is arbitrary, we see that $a_{k} \rightarrow b$ as $k \rightarrow \infty$. Hence $a=b$. This implies that for any $\epsilon>0$, there exists $M \geq 1$ such that $\left|(T x)_{m}-y_{m}\right|<\epsilon$ for all $m>M$. Put

$$
C_{M}:=\max _{1 \leq m \leq M} \sum_{n=1}^{\infty}\left|t_{m n}\right|<\infty
$$

Since $x^{k} \rightarrow x$ as $k \rightarrow \infty$, we have

$$
\left|(T x)_{m}-y_{m}\right|=\lim _{k \rightarrow \infty}\left|\sum_{n=1}^{\infty} t_{m n}\left(x_{n}-x_{n}^{k}\right)\right| \leq C_{M} \cdot \lim _{k \rightarrow \infty}\left\|x-x^{k}\right\|_{\infty}=0
$$

for all $1 \leq m \leq M$. Hence $\|T x-y\|_{\infty} \leq \epsilon$. We conclude that $y=T x$.
In general, we may define regular operators on ℓ_{c}^{∞}. Denote by ℓ_{0}^{∞} the closed subspace of ℓ_{c}^{∞} consisting of all the sequences $\left(x_{n}\right)_{n=1}^{\infty}$ such that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. For each $z \in \mathbb{C}$, let

$$
\ell_{0}^{\infty}+z:=\left\{\left(x_{n}+z\right)_{n=1}^{\infty}:\left(x_{n}\right)_{n=1}^{\infty} \in \ell_{0}^{\infty}\right\} \subseteq \ell_{c}^{\infty}
$$

Then ℓ_{c}^{∞} is the disjoint union of $\ell_{0}^{\infty}+z$ over $z \in \mathbb{C}$. We say that $T \in \mathcal{L}\left(\ell_{c}^{\infty}\right)$ is weakly regular if $T \in \mathcal{B}\left(\ell_{c}^{\infty}\right)$ and $T\left(e_{r}\right) \in \ell_{0}^{\infty}$ for all $r \geq 1$. Clearly, if T is weakly regular, then $\left.T\right|_{\ell_{0}^{\infty}} \in \mathcal{B}\left(\ell_{0}^{\infty}\right)$, since $\left\{e_{r}\right\}_{r=1}^{\infty}$ is a Schauder basis for ℓ_{0}^{∞}. However, the converse may not hold. We say that T is regular if T is weakly regular such that $T\left(e_{0}\right) \in \ell_{0}^{\infty}+1$. On the other hand, we say that $T \in \mathcal{L}\left(\ell_{c}^{\infty}\right)$ preserves limits if $\left.T\right|_{\ell_{0}^{\infty}} \in \mathcal{B}\left(\ell_{0}^{\infty}\right)$ and $T\left(\ell_{0}^{\infty}+z\right) \subseteq \ell_{0}^{\infty}+z$ for all $z \in \mathbb{C}$. Then one can show that $T \in \mathcal{L}\left(\ell_{c}^{\infty}\right)$ is regular if and only if T preserves limits.

References

[1] J. Conway, A Course in Functional Analysis, 2nd. ed., Grad. Texts in Math., vol. 96, Springer-Verlag, New York, 1990.
[2] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge Stud. Adv. Math., vol. 97, Cambridge Univ. Press, Cambridge, 2006.

Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA
Email address: steve.fan.gr@dartmouth.edu

[^0]: ${ }^{1}$ It is important to note that not every linear operator on $\left(\ell_{c}^{\infty},\|\cdot\|_{\infty}\right)$ has a matrix representation, though bounded ones do have representing matrices with respect to a Schauder basis for ℓ_{c}^{∞}, say $\left\{e_{r}\right\}_{r=0}^{\infty}$, where $e_{0}:=(1,1, \ldots)$ and $e_{r}=\left(x_{n}\right)_{n=1}^{\infty} \in \ell^{\infty}$ with $x_{r}=1$ and $x_{n}=0$ for all $n \neq r$ when $r \geq 1$, so that every $\left(x_{r}\right)_{r=1}^{\infty} \in \ell_{c}^{\infty}$ with $x_{r} \rightarrow x \in \mathbb{C}$ as $r \rightarrow \infty$ can be (uniquely) written as

 $$
 \left(x_{r}\right)_{r=1}^{\infty}=x e_{0}+\sum_{r=1}^{\infty}\left(x_{r}-x\right) e_{r}
 $$

